Перевод: с английского на все языки

со всех языков на английский

(when notched)

  • 1 impact resistance

    <qualit.mat> (of tires) ■ Stoßfestigkeit f ; Anprallfestigkeit f
    <qualit.mat> (when notched) ■ Kerbschlagzähigkeit f
    <qualit.mat> (e.g. acc. to Charpy or Izod; notched or unnotched) ■ Schlagzähigkeit f DIN53501 ; Schlagbiegezähigkeit f
    pract <qualit.mat> (gen.) ■ Schlagzähigkeit f ; Schlagfestigkeit f prakt
    < srfc> (e.g. of a paint film) ■ Schlagfestigkeit f

    English-german technical dictionary > impact resistance

  • 2 impact strength

    <qualit.mat> (when notched) ■ Kerbschlagzähigkeit f
    <qualit.mat> (e.g. acc. to Charpy or Izod; notched or unnotched) ■ Schlagzähigkeit f DIN53501 ; Schlagbiegezähigkeit f
    <qualit.mat> (gen.) ■ Schlagzähigkeit f ; Schlagfestigkeit f prakt

    English-german technical dictionary > impact strength

  • 3 Dawson, William

    SUBJECT AREA: Textiles
    [br]
    b. mid-eighteenth century
    d. c.1805 London, England
    [br]
    English inventor of the notched wheel for making patterns on early warp knitting machines.
    [br]
    William Dawson, a Leicester framework knitter, made an important addition to William Lee's knitting machine with his invention of the notched wheel in 1791. Lee's machine could make only plain knitting; to be able to knit patterns, there had to be some means of mechanically selecting and operating, independently of all the others, any individual thread, needle, lever or bar at work in the machine. This was partly achieved when Dawson devised a wheel that was irregularly notched on its edge and which, when rotated, pushed sprung bars, which in turn operated on the needles or other parts of the recently invented warp knitting machines. He seems to have first applied the idea for the knitting of military sashes, but then found it could be adapted to plait stay laces with great rapidity. With the financial assistance of two Leicester manufacturers and with his own good mechanical ability, Dawson found a way of cutting his wheels. However, the two financiers withdrew their support because he did not finish the design on time, although he was able to find a friend in a Nottingham architect, Mr Gregory, who helped him to obtain the patent. A number of his machines were set up in Nottingham but, like many other geniuses, he squandered his money away. When the patent expired, he asked Lord Chancellor Eldon to have it renewed: he moved his workshop to London, where Eldon inspected his machine, but the patent was not extended and in consequence Dawson committed suicide.
    [br]
    Bibliography
    1791, British patent no. 1,820 (notched wheel for knitting machine).
    Further Reading
    W.Felkin, 1867, History of Machine-Wrought Hosiery and Lace Manufacture (covers Dawson's invention).
    W.English, 1969, The Textile Industry, London (provides an outline history of the development of knitting machines).
    RLH

    Biographical history of technology > Dawson, William

  • 4 Izod, Edwin Gilbert

    SUBJECT AREA: Metallurgy
    [br]
    b. 17 July 1876 Portsmouth, England
    d. 2 October 1946 England
    [br]
    English engineer who devised the notched-bar impact test named after him.
    [br]
    After a general education at Vickery's School at Southsea, Izod (who pronounced his name Izzod, not Izod) started his career as a premium apprentice at the works of Maudslay, Sons and Field at Lambeth in January 1893. When in 1995 he was engaged in the installation of machinery in HMS Renown at Pembroke, he gained some notoriety for his temerity in ordering Rear Admiral J.A.Fisher, who had no pass, out of the main engine room. He subsequently worked at Portsmouth Dockyard where the battleships Caesar and Gladiator were being engined by Maudslay's. From 1898 to 1900 Izod worked as a Demonstrator in the laboratories of University College London, and he was then engaged by Captain H. Riall Sankey as his Personal Assistant at the Rugby works of Willans and Robinson. Soon after going to Rugby, Izod was asked by Sankey to examine a failed gun barrel and try to ascertain why it burst in testing. Conventional mechanical testing did not reveal any significant differences in the properties of good and bad material. Izod found, however, that, when specimens from the burst barrel were notched, gripped in a vice, and then struck with a hammer they broke in a brittle manner, whereas sounder material merely bent plastically. From these findings his well-known notched-bar impact test emerged. His address to the British Association in September 1903 described the test and his testing machine, and was subsequently published in Engineering. Izod never claimed any priority for this method of test, and generously acknowledged his predecessors in this field, Swedenborg, Fremont, Arnold and Bent Russell. The Izod Test was rapidly adopted by the English-speaking world, although Izod himself, being a busy man, did little to publicize his work, which was introduced to the engineering world largely through the efforts of Captain Sankey. Izod became Assistant Managing Director at Willans, and in 1910 was appointed Chief Consulting Mechanical and Electrical Engineer to the Central Mining Corporation at Johannesburg. He became Managing Director of the Rand Mines in 1918, and returned to the UK in 1927 to become the Managing Director of Weymann Motor Bodies Ltd of Addlestone. As Chairman of this company he extended its activitiesconsiderably.
    [br]
    Principal Honours and Distinctions
    MBE. Member of the Iron and Steel Institute.
    Further Reading
    1903, "Testing brittleness of steel", Engineering (25 September): 431–2.
    ASD

    Biographical history of technology > Izod, Edwin Gilbert

  • 5 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

См. также в других словарях:

  • List of Canada's Worst Handyman 2 episodes — This is a list of episodes from Canada s Worst Handyman 2 , the second season of the Canadian television series that seeks to find the worst handyman in the country. Airdates listed are the first air dates on Discovery Channel Canada the date of… …   Wikipedia

  • Critical band — The term critical band, introduced by Harvey Fletcher in the 1940s, referred to the frequency bandwidth of the then loosely defined auditory filter. Psychophysiologically, beating and auditory roughness sensations can be linked to the inability… …   Wikipedia

  • passeriform — /pas euhr euh fawrm , peuh ser euh /, adj. of or pertaining to the order Passeriformes; passerine. [ < NL Passeriformes, equiv. to L passer sparrow + iformes IFORMES] * * * ▪ bird Introduction also called  passerine  or  perching bird     any… …   Universalium

  • Critical bands — The term critical band, introduced by Harvey Fletcher in the 1940s, referred to the frequency bandwidth of the then loosely defined auditory filter. Since Georg von Békésy’s studies (1960), the term also refers literally to the specific area on… …   Wikipedia

  • West Virginia Prehistory — The area now known as West Virginia was a favorite hunting ground of numerous Native American peoples before the arrival of European settlers. Many ancient man made earthen mounds from various mound builder cultures survive, especially in the… …   Wikipedia

  • Glossary of botanical terms — Many of the terms used in Wikipedia glossaries (often most) are already defined and explained within Wikipedia itself. However, lists like the following indicate where new articles need to be written and are also useful for looking up and… …   Wikipedia

  • perciform — ▪ fish order Introduction       any member of the order Perciformes, a group of bony fishes with more than 6,000 species placed in about 150 families. The order is the largest group of fishes in the world today. Perciform fishes occur in… …   Universalium

  • Suit (clothing) — Western dress codes Formal wear Formal Semi formal Informal (including lounge suits) Smart casual Business casual Casual Active attire …   Wikipedia

  • swimming — swimmingness, n. /swim ing/, n. 1. the act of a person or thing that swims. 2. the skill or technique of a person who swims. 3. the sport of swimming. adj. 4. pertaining to, characterized by, or capable of swimming. 5. used in or for swimming:… …   Universalium

  • NCAA football bowl games, 2005–06 — The 2005 06 NCAA college football bowl season was a series of 28 post season games (including the Bowl Championship Series) that was played in December 2005 and January 2006 for Division I A football teams and all stars from Divisions I AA, II,… …   Wikipedia

  • 2005–06 NCAA football bowl games — Number of bowl games per state. Season 2005 Regular season September 1–December 3 …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»